
Getting started
Antivirus program blocks vDosSetup
Before a new version of vDos is released, vDosSetup and vDos are submitted to
www.virustotal.com. There tested by some 70 anti-virus programs. Eventual false
positives are then reported to those anti-virus companies.

But it seems an anti-virus program could still later on mistrust the same
vDosSetup it once approved of. Windows Defender (once/twice?) did.

If your anti-virus program complains about vDosSetup: First make sure its virus
database is up-to-date. Eventually go to www.virustotal.com, and check
vDosSetup.exe yourself.

Install vDos
When you run the downloaded vDosSetup installation program, it will offer to
create a vDos folder on your C: drive. You can select another location, but
C:\vDos is a good starting point for a first-time impression and testing.

vDosSetup doesn’t modify anything to your Windows system internals. It only
creates that vDos folder and a desktop shortcut. There’s even no uninstall option.
If vDos doesn't work for you, you'll have to delete those two items by hand!

The vDos folder will contain these files:
 autoexec.txt

The equivalent of DOS autoexec.bat.
 config.txt

DOS had config.sys, Windows config.nt, vDos has config.txt. Like autoexec.txt,
the .txt extension is for easy editing, without Windows trying to ‘execute’ it.

 FAQs.pdf
This document.

 Icons.icl
Some alternative icons to eventually assign to vDos shortcuts.

 Printing.pdf
Documentation of vDos printing capabilities.

 Readme.pdf
An introduction to vDos.

 vDos.exe
The Windows program emulating a DOS PC in a window to run your
application(s).

And two subfolders:
 DPTEST

The DOS DataPerfect TestDrive demo program, started by the initial
autoexec.txt file.

 EXTRA
Rarely used DOS specific code page files, missing in Windows.

https://www.virustotal.com/

Start vDos by the desktop shortcut “vDos - Initial test”. Its window will show,
awaiting a keystroke to start the before mentioned demo program.

The demo ran fine; how to run/test my DOS application
Once your application ran in DOS, then it migrated to Windows 32-bit. Now you’re
facing vDos, a Windows program that should enable you to run that application
(with additional features) in Windows 32 or 64-bit.

For now, we’re in a testing phase, and assume vDos is installed to the default
Windows C:\vDos folder.

 Open the autoexec.txt file, and just delete all its content. The demo program
doesn't need to start anymore. Save the empty file and start vDos again.

 That will bring the famous C:\> DOS prompt. Notice however that this vDos C:
isn't Windows C:! Instead vDos C: at this moment defaults to the Windows
C:\vDos folder. Eventually do a DIR command to display the files and folders
on this vDos C: drive. Leave the vDos window open.

 You will still have your application running on some system. Copy its folder(s)
to the vDos folder. So you’ll have something like C:\vDos\DosApp,
C:\vDos\DosData…

 Have a close look at how the application was started before. That would be by
some batch file, we’ll assume it is “start.bat”. If it isn’t already in the copied
folder(s), copy that also to the C:\vDos folder.

 Do another DIR command in the vDos window, you’ll see the newly copied
folder(s). Now start the application by start.bat (it’s in vDos C:), or
folder\start.bat (substituting folder by that start.bat is located in). If the
application starts, you end it and get back to the DOS prompt; Close the vDos
window by issuing EXIT.

 If the application doesn’t start, that will most likely be because it expects (relies
on) a drive letter or directory structure that doesn’t match what we got so far in
vDos. If it for instance expects a F: drive letter with the program and data files
(DosApp, DosData…), you’ll have to assign the vDos F: to the correct
Windows folder. That would be C:\vDos in this example. Issue USE F:
C:\vDos, then select that drive by F:, so you’ll get a F:\> prompt. Now try to
start the application again. If it still doesn’t start, open the batch file starting the
application in for instance Notepad (don’t double click the batch file!). Look for
the line that starts your application. If some other program is started before
that, temporary disable it by adding REM. For instance REM program, save
the batch file and try again.

 If you still have trouble running the application, post your problem at the vDos
forum. Specify what vDos version you use (should be the most recent one),
what directory structure you have (C:\vDos\DosApp…), what application you
try to start, and how it is supposed to start (the start.bat contents).

Start the application by starting vDos
 Open autoexec.txt, if you didn’t already delete its contents, do it now.
 Add the command lines that you entered by hand in the previous section, for

instance:
USE F: C:\vDos
F:
CALL DosApp\start.bat

 Save the file, and start vDos again.
 Issue EXIT to close the vDos window.
 If your application didn't start, correct the command lines in autoexec.txt.
 Add a final command line to autoexec.txt: EXIT, so the vDos window will close

the moment you end the application.

Roundup, ‘going live’
We assumed you copied the application folder(s) temporary to Windows C:\vDos.
And the application was started by autoexec.txt with:
USE F: C:\vDos\
F:
CALL DosApp\start.bat
EXIT
To start the application with the ‘live’ data, change the folder reference in the first
line to where the DosApp is actually located. For instance:
USE F: D:\DOS\
or
USE F: \\server\share_name\DOS\

That’s it.

If you have more than one DOS application:

 Copy config.txt and autoexec.txt to a separate folder, preferably nearby the
second application

 Modify autoexec.txt to start that application. Eventually temporary rem-out the
last EXIT and test.

 Create a new (desktop) shortcut to vDos.exe, or create a copy of the installed
one.

 Give it a sensible name, like “DOS accounting”. That will also be displayed in
the caption bar of the vDos window.

 Go to the properties of the shortcut (right click), set the "Start in:" property to
the folder with the autoexec.txt and config.txt of that second application.

 Eventually, if you like to: Assign a Shortcut key, and another icon image to the
shortcut.

Miscellaneous
FILES= and other directives once in config.sys
BUFFERS=
This was a kind of basic local disk caching, but has no meaning anymore. vDos
isn't the operating system (DOS once was) controlling the drive, any caching
could be a disaster for your data on the drive, waiting to happen.
DOS=
DOS in vDos is simulated outside the virtual PC. It is no longer some 16-bit code
executed by the (emulated) CPU. So this directive is also meaningless in vDos,
there is essentially no DOS code in the virtual PC’s memory.
DEVICE=
vDos shouldn’t need device drivers. For instance ansi.sys is built-in.
FILES=
The number of global DOS file handles in vDos is 255, the maximum.
STACKS=
Simulated DOS in vDos has no use for this directive.

SHARE - Record locking (RL) by multi-user applications
In the DOS days, RL was provided by the SHARE program. If more than one
need to access the same data, the (mostly a database oriented) program
occasionally requires exclusive access to some parts of files (RL data and
indexes). “I’m going to modify those, can’t have someone else interfering while
doing that”.

The operating system (OS) in control of the disk maintains a table of file regions
granted a RL request by a program. DOS is since Windows NT no longer that OS,
SHARE useless: Its functionality provided by Windows, or the OS managing the
network drive. vDos secures RL is functioning for a drive, then mostly just
forwards RL requests to Windows. RL (by database programs) is more complex,
but this will do.

Some DOSBox mods claim RL support, but turn out to be a disaster. Besides
granted exclusive access, the internal program data has to match what’s actually
on disk that moment. DOSBox (mods) however caches disk operations, possibly
outdated data lurking all around (the network). One DOSBox mod ‘solution’ first
updates the caches with RL. That doesn’t do it either: Local caches at other PC’s
can still destroy the database. Especially indexes are vulnerable due to the
compact and structured organization.

My application (occasionally) runs slower than before
To overcome Windows 64-bit not able to execute 16-bit programs, vDos emulates
a 80386 CPU in software. A single emulated CPU instruction will so result in
many instructions to the actual CPU. The operating state, internal registers of the
emulated CPU are maintained in relatively slow memory, and more technical
stuff.
In raw processing power the emulated CPU can be up to 40 times slower than the
real thing! The emulated CPU got over 100% faster the past years, but no further
significant improvements should be expected.

DOS applications however don’t run that much slower. They frequently call BIOS
and DOS functions, mostly executing faster than before (simulated in 32-bit
mode). Reading from and writing data to disk is the real bottleneck for a program,
that is also at least as fast. On average DOS programs will operate only a few
times slower than on a real DOS PC or Windows 32-bit/NTVDM. Shouldn’t be that
an issue: With user interaction, a program is mostly waiting for user input.
Whether she/he then has to wait 0.01 or 0.05 seconds before the program
responds, isn’t noticeable.

But w/o user interaction, few BIOS/DOS calls, little disk access, lengthy CPU
intensive tasks. Like sorting database records in memory, the slowness of the
emulated CPU will become more profound. You just have to life with that.

No LFN support
DOS was originally restricted to 8.3 filenames; 1-8 characters for the name, 1-3
characters for an optional extension. Windows came with “Long File Names”
(LFN), supporting up to 255 characters. Microsoft also came up with a scheme so
DOS programs could access those LFN files: “Short File Names” (SFN).

vDos doesn't support LFN directly: Those are optionally used by only a few
(mainly utility) DOS programs. A Zip/Unzip program version, ditto file manager
and some other obscure examples, just silly to be started in vDos. You have
genuine Windows program for that! A list of LFN aware DOS programs.

vDos/DOS drive letters are not those of Windows
Once you had a DOS system, solely dedicated to run DOS programs and store
their data. DOS PC’s got replaced by Windows PC’s. For simplicity we forget
about Windows 3.x - 98 (mainly DOS programs), and skip to Windows NT/XP (not
DOS based anymore).

Microsoft had to make sure DOS programs would still run. Not to make the same
mistake as OS/2. Its lack of adequate DOS support (besides of being ahead of
affordable hardware) was a deal breaker for DOS users.

Microsoft came with NTVDM (New Technology Virtual DOS Machine), integrated
in Windows 32-bit. DOS programs could be started, largely as before in DOS. But

http://individual.utoronto.ca/wengier/doslfns.htm

that integration came at a cost: The Windows PC is surely no longer dedicated to
run DOS programs. The Internet is surfed, email checked, MS Office used, and a
lot more Windows specific stuff. Most folders and files have no meaning to DOS
programs.

DOS programs got access to all Windows drives (letters) and directories, while
there is no need for that. Certainly not the root of Windows boot drive C:.
Windows even doesn’t like that. DOS programs need drive letters, these then had
to be created for non-local drives in Windows, while Windows (programs) doesn’t
need those.

Although you might be accustomed to DOS drive letters being those of Windows,
reconsider that. The vDos USE command allows to only make available those
regions of Windows filesystem your DOS program needs accessing. Even if you
don’t want to forgo for instance a Windows F: drive being mapped to a network
share: Don’t do USE F: F:\. That is a (possibly confusing, even troublesome)
roundabout. Instead do the direct USE F: \\server\share\.

vDos optional full screen mode isn’t real full screen
PC monitors evolved since DOS: CRT to LCD/LED - 4:3 to 16:9 widescreen. So
did TV’s, occasionally a popular old serial (DOS) is rerun, 4:3 content however
doesn’t fit a 16:9 sized modern TV (or PC monitor). You get bars alongside, or a
stretched image:

It’s not vDos or Windows to blame you don't get what you perhaps hoped for.

Some programs of all I tried out, didn’t run
vDos is meant to run productive DOS programs still being used. Not to play with.

Printing
DOS/vDos printing
Printing by a DOS application differs completely from Windows printing. vDos
should by default mostly determine correctly how to handle that. So just start with
what that will bring.

One exception could be printing to an actual old-style DOS printer. vDos supports
that also, but you might consider switching to Windows printing. So you can use
any printer supported by Windows (for instance also virtual PDF).

Keep in mind, DOS LPT/COM ports/devices in vDos aren’t those of Windows.
With that you were only able to print to actual DOS printers. Even if you
convinced Windows to print to an USB or network printer instead.

Troubleshooting
The printing capabilities and options of vDos are covered by the Printing.pdf
document in the vDos folder. If printing doesn't work as expected: Read that
document. Many questions in the past just came from not reading (anything).

vDos creates two files before the actual printing process starts: A
#LPTx/#COMx.asc (x being the port number), and a .txt version of that. Those
however have no value for vDos itself. The .txt version is mostly a means to
export (large amounts of) data, to be imported by a Windows program (the DOS
ASCII text is translated to Windows Unicode). The .asc version contains the data
stream as send by your program to the printer. It is generated to facilitate an
eventual third-party DOS-to-Windows print processor, and for debugging
purposes.

If you have an issue with printing: Submit a copy of the generated .asc file, so the
problem can be reproduced and investigated (that’s the debugging part).

The COMx port isn’t related to a printer
By default, writing to LPTx/COMx ports (DOS, BIOS or direct hardware) is
considered to be a printing task.

If COMx however is supposed to access some serial device; use the COMx =
"COMy": directive in config.txt. Mind the trailing colon, it is mandatory. You also
have to initialize the Windows COMy device before starting vDos. By the MODE
COMy command, or the device manager.

Support of serial devices is basic. To add further support, I would to have such a
port, a connected hardware device, and DOS software using those. I don’t and
gave up communicating with those (initially) willing to do some testing. Though
that basic support should mostly work, as reported so far.

Digital printing with stationary (PDF)
Documents are more and more stored and sent digitally, instead of printed out on
paper. You want those documents to resemble closely the former printouts on
your stationary. vDos internal print processor doesn’t support bitmap graphics, but
that actually is of no concern to produce high quality digital documents.

You’ll need:
 A digital copy of your stationary, ask your print supplier for the PDF file(s),

vector based! Eventually modify those, or even create your own. I created
InvoiceBack.pdf from scratch as an example.

 A virtual PDF printer that creates a PDF file, instead of printing to paper. A
freeware PDF printer, capable of merging two PDF files, could do. But for
instance novaPDF is more versatile with his profiles, options and different
handlings of documents: What stationary to use, how to name, where to
store…

I created two files by hand:
 InvoiceBack.pdf: The stationary used for invoices.
 Invoice.txt: Output of an imaginary DOS invoice program, just plain ASCII

(DOS) text.

The setup in config.txt: LPT1 = sel:"novaPDF 11".

Since there’s no actual invoice program to print, this was mimicked by COPY
INVOICE.TXT LPT1 at the command prompt. The Select Profile dialog of
novaPDF pops up (I have several profiles), I chose the temporary test profile
“Invoice”. That is setup to merge the printers output with InvoiceBack.pdf to a
PDF file with an incrementing number as its name (matching the invoice number),
save it to the designated folder for invoices, and open it in the default PDF viewer.
The result isn’t that bad for a simple test.

Generating PDF’s this way, keep in mind:
 Make sure (test a generated file) the PDF documents can actually be printed

as expected. PDF version 1.4 gives consistent good results for me.
 Consider what actions to allow with the PDF's. You won’t want for instance

invoices to be modified. I just set them to print-only.
 Invest some initial time on fine-tuning the PDF's and optimizing the automated

document handling.

https://www.vdos.info/6067.pdf

Advanced
Windows environment variables in vDos
If you want to use a Windows environment variable (like %systemroot% or
%homedrive%) in your DOS program, you first have to explicitly declare it. In
autoexec.txt, another batch file, or at the command line. The Windows variable
must be surrounded by two percent signs:
set vdosvar=%%windowsvar%%

For example, before you can use Windows %systemroot% in your DOS program,
you first declare it like:
set systemroot=%%systemroot%%
At startup, one Windows variable is already set to a DOS variable:
WIN_VDOS: The VDOS variable if set in Windows (%VDOS%), the command
line parameters of vDos.exe, or “” if both are missing.

Start a Windows program or command processor
The vDos internal CMD command is linked to Windows command processor
(CMD). It can be used at the vDos command line, or from within a program by:
CMD ["program"] [WAIT][HIDE] command line
"program": If supplied, the quotes are mandatory.
WAIT: Wait for the program or command processor to complete.
HIDE: Start the program or command processor minimized.
command line: Passed on to the program or command processor.

Eventual paths in command line (and "program") are those of Windows.

The optional WAIT and HIDE have to be in capitals. Mind, WAIT in combination
with the Windows command line has a major limitation: If that executes a
program, it will exit immediately. While the external program could still be running.
The exit code will then merely indicate the program could be started.

If you want to redirect the input or output, enclose the entire command line in
quotes.

Some examples:
CMD notepad mydoc.txt
CMD HIDE /c "mytest.bat>mytest.txt"
CMD /c start /max notepad

You can also call a Windows program directly from within a DOS program:
program [WAIT][HIDE] command line
Here program is a DOS file name reference. vDos will determine what it is
supposed to be: A DOS or Windows program. And will start that inside the virtual
PC (DOS program), or in a new window (Windows program). Program can for
instance even be a document, to be opened by the associated Windows program.

Note: Some DOS programs don’t execute external programs directly, but call the
DOS command processor (command.com) to do that.

A portable DOS application
In autoexec.txt you could have something like:
USE F: \\server\DOS\
F:
CD DOSapp
mydosapp.exe

Great, you already used the direct UNC path, instead of mapping a Windows
drive letter to it, then refer to that drive letter. Can we even do without a (absolute)
Windows path?

Sure, when vDos is started, the Windows current work directory for that vDos
instance is set to the folder vDos.exe is started from. If vDos.exe would be
located in \\server\DOS, that will become the Windows work directory. A relative
path works equally well for the USE command. So we can also do:
USE F: .\
Or if we have a separate vDos folder (\\server\DOS\vDos):
USE F: ..\

What will a portable DOS application eventually bring?
First, if you can get to (so start) vDos.exe, your application will run. No matter
from where it is started, or its location (local, network, RDP, VPN, in the cloud…).
Second, you can relocate the application without any modification needed. Or
create a copy of it at another location, for testing, backup…

Build your own copy/version of vDos
Here is a beginner's guide to building a copy of vDos from the sources. There is
only one reason to do this: If you want to make your own copy of vDos that
includes changes in the source code. This procedure was tested under Windows
8.1, but should work with any recent Windows version.

This assumes a basic understanding of Windows software (for example, you
should know how to open .7z archives). You will be able to do very little with the
source code unless you know something about C/C++, but you may be able to
make some useful changes with very little knowledge.

If you have any questions about these instructions, you should be able to
figure out the answers for yourself by experimenting or by searching the
Internet.

 Request the vDos source code; start by visiting this page.
 Use a standard archive manager (e.g. 7zFM.exe) to extract the vDos folder

from the vDosSources.7z archive to any convenient place on your system
(such as your desktop).

 Download the free Visual Studio Community Edition from the Download link on
this page.

 Run the downloaded installation program, and proceed as follows.
 Check the box where you agree to the license terms; click Next.
 Remove the checkmarks from everything on the list of “Optional features to

install”; click Install and proceed through the installation. At the end, do not
click “Launch" but simply close the installation program.

 In the vDos folder that you extracted to your disk in step 2, open the
visualc_net folder and double-click on vDos.sln.

 When Visual Studio opens, you can sign in with a Microsoft account if you
want, or you can ignore the sign-in option.

 Visual Studio will offer to upgrade the VC++ Compiler and Libraries. Click OK.
 In the Solution Explorer on the left you will see vDos in bold. Right-click on it,

and choose Build from the pop-up menu, and wait while the project builds.
 When the Output window shows “Build: 1 succeeded…”, go back to the vDos

folder and go to the vDos\bin folder. You will find the copy of vDos.exe that
you built.

You may now experiment with the vDos source code and rebuild vDos to
experiment with the results of your changes.

https://www.vdos.info/sources.html
https://www.visualstudio.com/downloads/

